A Partial Pressure and Stoichiometry Problems

Dr. Richard C. Sobers Jr.

Partial Pressure Problem

A Sample of zinc metal reacts completely with hydrochloric acid:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The hydrogen gas is collected over water at $25^{\circ} \mathrm{C}$. The gas volume is found to be 7.80 L and the atmospheric pressure is 0.980 atm . Calculate the mass of zinc metal that reacted.

Partial Pressure Problem

A Sample of zinc metal reacts completely with hydrochloric acid:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Moles $\mathrm{H}_{2} \rightarrow$ Moles Zn

Moles $\mathrm{Zn} \rightarrow$ Mass Zn

Partial Pressure Problem

A Sample of zinc metal reacts completely with hydrochloric acid:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

How do we get moles of H_{2} ?

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\begin{gathered}
298 \mathrm{~K} \\
7.80 \mathrm{~L} \\
0.980 \mathrm{~atm}
\end{gathered}
$$

But first look at the experiment

Partial Pressure Problem

Gas is collected over water so that the atmosphere is not present. Water levels made equal so pressure inside is equal to that outside

But is the pressure inside due to hydrogen gas only?

Vapor Pressure Curve for Water

At $25^{\circ} \mathrm{C}$:
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=23.8 \mathrm{mmHg}$
Or
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.0313 \mathrm{~atm}$

Partial Pressure Problem

A Sample of zinc metal reacts completely with hydrochloric acid:

$$
\begin{aligned}
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+ & \mathrm{H}_{2}(\mathrm{~g}) \\
& 298 \mathrm{~K} \\
& 7.80 \mathrm{~L}
\end{aligned}
$$

$$
P_{\mathrm{H} 2}=0.949 \mathrm{~atm}
$$

Partial Pressure Problem

A Sample of zinc metal reacts completely with hydrochloric acid:

$$
\begin{gathered}
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
\mathbf{P}_{\mathbf{H} 2} \mathbf{V}=\mathrm{n}_{\mathbf{H} 2} \mathbf{R T} \quad \mathrm{~T}=298 \mathrm{~K} \quad \mathrm{~V}=7.80 \mathrm{~L} \\
\mathrm{P}_{\mathrm{H} 2}=0.949 \mathrm{~atm} \quad \mathrm{R}=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}} \\
(0.949)(7.80)=\mathrm{n}(0.08206)(298) \\
\mathrm{n}_{\mathrm{H} 2}=0.303 \mathrm{moles}
\end{gathered}
$$

Partial Pressure Problem

A Sample of zinc metal reacts completely with hydrochloric acid:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

0.303 mol

$$
0.303{\underset{\mathrm{~mol}}{2}}^{\mathrm{H}_{2}}\left(\frac{1 \mathrm{~mol} \mathrm{Zn}^{2}}{1 \mathrm{molH}}\right)\left(\frac{65.39 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}}\right)=19.8 \mathrm{~g} \mathrm{Zn}
$$

Stoichiometry with Gases

Moles and Volumes of Gas

At STP, 1 mol of a gas has a volume of 22.4 L
If you know the molar volume at other pressure and temperature conditions then you can use that.

Stoichiometry Problem With 2 Gases

For example: The combustion of propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What volume of carbon dioxide is produced at STP if 0.500 L of propane at 50.0 psi and $25.0^{\circ} \mathrm{C}$ is combusted?

Combustion of Propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Combustion of Propane

Volume \rightarrow moles of propane: $\mathbf{P V}=\mathbf{n R T}$

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 25.0^{\circ} \mathrm{C} \\
& 0.500 \mathrm{~L} \\
& 50.0 \mathrm{psi} \\
& \\
& \quad \begin{array}{l}
\text { prop }
\end{array} \\
& \quad 298 \mathrm{~K} \quad \mathrm{~V}_{\text {prop }}=0.500 \mathrm{~L} \quad \mathrm{P}_{\text {prop }}=3.40 \mathrm{~atm} \\
& \quad \mathrm{n}_{\text {prop }}=\mathrm{PV} / \mathrm{RT}=0.0695 \mathrm{~mol}
\end{aligned}
$$

Combustion of Propane

Moles Propane \rightarrow Moles Carbon dioxide

$$
\begin{aligned}
& \quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{n}_{\text {prop }}= \\
& 0.0695 \mathrm{~mol}
\end{aligned}
$$

$0.0695 \mathrm{molC}_{8} \mathrm{H}_{8}\left(\frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{morc}_{8} \mathrm{H}_{8}}\right)=0.209 \mathrm{~mol} \mathrm{CO}_{2}$

Combustion of Propane

Volume \rightarrow moles of carbon dioxide:

$$
\begin{aligned}
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow & 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{n}_{\mathrm{CO} 2}=0.209 \mathrm{~mol} \\
& \mathrm{~T}=273 \mathrm{~K} \quad \mathrm{STP} \\
& \mathrm{P}=1.00 \mathrm{~atm}
\end{aligned}
$$

Could use PV $=n R T: \quad T=273 \mathrm{~K}$

$$
\begin{aligned}
& \mathrm{n}=0.209 \mathrm{~mol} \\
& \mathrm{P}=1.00 \mathrm{~atm}
\end{aligned}
$$

Combustion of Propane

Volume \rightarrow moles of carbon dioxide:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{n}_{\mathrm{CO} 2}=0.209 \mathrm{~mol}
\end{aligned}
$$

Could also use the molar volume at STP (22.4L/mol):

$$
0.209 \mathrm{morca}_{2}\left(\frac{22.4 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{moTCQ}_{2}}\right)=4.68 \mathrm{~L} \mathrm{CO}_{2}
$$

Volume Ratios of Gases

The stoichiometric ratio applies to gas volumes if the gases are at the same temperature and pressure. This is the law of Guy-Lusaac.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What volume of carbon dioxide gas at STP is produced if 0.500 L (measured at STP) of propane are combusted?

$$
0.500 \mathrm{DC}_{8} \mathrm{H}_{8}\left(\frac{3 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{LC}_{3} \mathrm{H}_{2}}\right)=1.50 \mathrm{~L} \mathrm{CO}_{2}
$$

Volume Ratios of Gases

Volume Ratios of Gases

Back to this problem: The combustion of propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What volume of carbon dioxide is produced at STP if 0.500 L of propane at 50.0 psi and $25.0^{\circ} \mathrm{C}$ is combusted?

Can we use volume ratios instead of mole ratios?

Volume Ratios of Gases

Back to this problem: The combustion of propane

$$
\begin{array}{ll}
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow & 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
298 \mathrm{~K} & 273 \mathrm{~K} \\
3.40 \mathrm{~atm} & 1 \mathrm{~atm} \\
0.500 \mathrm{~L} & \mathrm{~V}=?
\end{array}
$$

Can we use volume ratios instead of mole ratios?
Yes - first calculate volume of propane if at STP!

Volume Ratios of Gases

Volume (298K, 3.40atm) \rightarrow Volume (STP) of propane:

For propane:

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1} \mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2} \mathrm{~T}_{2}}
$$

$$
\begin{array}{lll}
\mathrm{T}_{1}=298 \mathrm{~K} \quad \mathrm{P}_{1}=3.40 \mathrm{~atm} \quad \mathrm{~T}_{2}=273 \mathrm{~K} & \mathrm{P}_{2}=1 \mathrm{~atm} \\
\mathrm{~V}_{1}=0.500 \mathrm{~L} & \mathrm{n}_{1}=\mathrm{n}_{2} & \mathrm{~V}_{2}=? ?
\end{array}
$$

$$
\frac{(3.40 \mathrm{~atm})(0.500 \mathrm{~L})}{298 \mathrm{~K}}=\frac{(1 \mathrm{~atm}) \mathrm{V}_{2}}{273 \mathrm{~K}}
$$

$$
\mathrm{V}_{2}=1.56 \mathrm{~L}
$$

Volume Ratios of Gases

Volume propane (STP) \rightarrow Volume CO_{2} (STP):

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \begin{array}{l}
1.55 \mathrm{~L} \\
\mathrm{STP} \\
\\
1.56 \mathrm{LC}_{3} \mathrm{H}_{8}\left(\frac{3 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{LC}_{3} \mathrm{H}_{8}}\right)=4.68 \mathrm{~L} \mathrm{CO}_{2}
\end{array}
\end{aligned}
$$

